Cách Giải Phương Trình Lượng Giác Cơ Bản Cực Hay

Các dạng toán phương trình lượng giác, phương pháp giải và bài tập trường đoản cú cơ bạn dạng đến nâng cao - toán lớp 11

Sau khi có tác dụng quen với những hàm lượng giác thì những dạng bài xích tập về phương trình lượng giác đó là nội dung tiếp theo sau mà những em sẽ học trong công tác toán lớp 11.

Bạn đang xem: Cách giải phương trình lượng giác cơ bản cực hay


Vậy phương trình lượng giác có những dạng toán nào, cách thức giải ra sao? bọn họ cùng mày mò qua bài viết này, đồng thời vận dụng các cách thức giải này để làm các bài tập trường đoản cú cơ bạn dạng đến nâng cao về phương trình lượng giác.

I. Lý thuyết về Phương trình lượng giác

1. Phương trình sinx = a. (1)

° |a| > 1: Phương trình (1) vô nghiệm

° |a| ≤ 1: gọi α là một trong cung thỏa sinα = a, khi đó phương trình (1) có những nghiệm là:

 x = α + k2π, ()

 và x = π - α + k2π, ()

- Nếu α thỏa mãn nhu cầu điều kiện 

*
 và sinα = a thì ta viết α = arcsina. Lúc đó những nghiệm của phương trình (1) là:

 x = arcsina + k2π, ()

 và x = π - arcsina + k2π, ()

- Phương trình sinx = sinβ0 có những nghiệm là:

 x = β0 + k3600, ()

 và x = 1800 - β0 + k3600, ()

2. Phương trình cosx = a. (2)

° |a| > 1: Phương trình (2) vô nghiệm

° |a| ≤ 1: gọi α là 1 cung thỏa cosα = a, khi ấy phương trình (2) có những nghiệm là:

 x = ±α + k2π, ()

- Nếu α vừa lòng điều kiện 0 ≤ α ≤ π và cosα = a thì ta viết α = arccosa. Lúc đó các nghiệm của phương trình (2) là:

 x = ±arccosa + k2π, ()

- Phương trình cosx = cosβ0 có những nghiệm là:

 x = ±β0 + k3600, ()

3. Phương trình tanx = a. (3)

- Tập xác định, hay đk của phương trình (3) là: 

*

- Nếu α thỏa mãn điều khiếu nại

*

- Nếu α thỏa mãn nhu cầu điều kiện

*

II. Những dạng toán về Phương trình lượng giác và phương thức giải

° Dạng 1: Giải phương trình lượng giác cơ bản

* Phương pháp

- Dùng những công thức nghiệm tương ứng với từng phương trình.

* lấy một ví dụ 1 (Bài 1 trang 28 SGK Đại số với Giải tích 11): Giải những phương trình sau:

a) b)

b)

d)

*

* giải mã bài 1 trang 28 SGK Đại số cùng Giải tích 11:

a)  

*

 

*

b) 

*

 

*

 

*

c) 

*

 

*

 

*

 

*

d)

*
 
*

 

*

*
*
 
*

* ví dụ như 2: Giải các phương trình sau:

 a)

 b)

 c)

 d)

° Lời giải:

a) 

*

 

*
 
*
*

b) 

*

 

*
 
*
 
*

c) 

*

 

*
 
*

d) 

*

 

*
 
*

° Dạng 2: Giải một vài phương trình lượng giác gửi được về dạng PT lượng giác cơ bản

* Phương pháp

- Dùng các công thức biến đổi để mang về phương trình lượng giác đã mang đến về phương trình cơ bản như Dạng 1.

* ví dụ như 1: Giải các phương trình sau:

a) 

*

b) 

*

c) 

*

d) 

*

° Lời giải:

a)

*
 
*

 

*
*
 
*

+ Với 

*
 
*
 hoặc 
*

+ với

*
 
*
 hoặc 
*

b) 

*
 
*

 

*
 
*

c)

*
 
*

 

*
 

 

*

 

*

 

*

d)

*
*

 

*
 
*

 

*
 hoặc 
*

 

*

* lưu lại ý: Bài toán trên vận dụng công thức:

 

*
*

 

*
*

* ví dụ như 2: Giải những phương trình sau:

a) 

b)

° Lời giải:

a) 

 

*
*

 

*
 
*

 

*
 hoặc 
*
 với 
*

b)

 

*
 
*

 

*
 
*

 

*

 

*
 hoặc 
*
 với 
*

* lưu ý: bài toán áp dụng công thức chuyển đổi tích thành tổng:

 

*

 

*

 

*

* ví dụ 3: Giải các phương trình sau:

a)1 + 2cosx + cos2x = 0

b)cosx + cos2x + cos3x = 0

c)sinx + sin2x + sin3x + sin4x = 0

d)sin2x + sin22x = sin23x

° Lời giải:

a)

*

 

*
 
*

 

*
 
*

b)

*

 

*
 
*

 

*
*
 
*

c)

*

 

*

 

*

 

*

  hoặc 

*

  hoặc 

*

 

*
 hoặc 
*
 hoặc 
*

 

*
 hoặc 
*
 hoặc 
*
 với 
*

d)

*

 

*

 

*

 

*

 

*

 

*

 

*

 

*
 
*

 

*
 hoặc 
*
 hoặc 
*

* lưu giữ ý: Bài toán bên trên có vận dụng công thức biến hóa tổng các kết quả và bí quyết nhân đôi:

 

*

 

*

 

*

 

*

 

*

 

*
 
*

° Dạng 3: Phương trình hàng đầu có một hàm con số giác

* Phương pháp

- Đưa về dạng phương trình cơ bản, ví dụ: 

* ví dụ như 1: Giải các phương trình sau:

a) 

b) 

° Lời giải:

a)  

 

*
 
*

+ Với 

*

+ Với 

*

b)

 

*

 

*

 

*

 

*
 hoặc 
*

+ Với 

*
 
*
*

+ Với 

*
: vô nghiệm.

° Dạng 4: Phương trình bậc hai gồm một hàm con số giác

* Phương pháp

♦ Đặt ẩn phụ t, rồi giải phương trình bậc hai đối với t, ví dụ:

 + Giải phương trình: asin2x + bsinx + c = 0;

 + Đặt t=sinx (-1≤t≤1), ta bao gồm phương trình at2 + bt + c = 0.

* giữ ý: Khi đặt t=sinx (hoặc t=cosx) thì phải bao gồm điều kiện: -1≤t≤1

* lấy một ví dụ 1: Giải các phương trình sau

a) 

b) 

° Lời giải:

a) 

- Đặt 

*
 ta có: 2t2 - 3t + 1 = 0

 ⇔ t = 1 hoặc t = 1/2.

+ với t = 1: sinx = 1 

*

+ với t=1/2: 

*
 

 

*
 hoặc 
*

b) 

 

*

*

+ Đặt 

*
 ta có: -4t2 + 4t + 3 = 0

 ⇔ t = 3/2 hoặc t = -1/2.

Xem thêm: 11 Kiêng Kị Uống Sữa Đậu Nành Cần Nhớ, Sữa Đậu Nành, Tác Dụng, Uống Nhiều Có Tốt

+ t = 3/2 >1 buộc phải loại

*
*
 
*

* Chú ý: Đối với phương trình dạng: asin2x + bsinx.cosx + c.cos2x = 0, (a,b,c≠0). Phương thức giải như sau:

 - Ta có: cosx = 0 chưa hẳn là nghiệm của phương trình bởi a≠0,

 Chia 2 vế đến cos2x, ta có:atan2x + btanx + c = 0 (được PT bậc 2 cùng với tanx)

 - ví như phương trình dạng: asin2x + bsinx.cosx + c.cos2x = d thì ta nuốm d = d.sin2x + d.cos2x, và rút gọn mang lại dạng trên.

° Dạng 5: Phương trình dạng: asinx + bcosx = c (a,b≠0).

* Phương pháp

◊ giải pháp 1: Chia nhì vế phương trình cho , ta được:

 

 - Nếu  thì phương trình vô nghiệm

 - Nếu  thì đặt 

 (hoặc )

- Đưa PT về dạng:  (hoặc ).

 ◊ phương pháp 2: Sử dụng bí quyết sinx với cosx theo ;

 

 - Đưa PT về dạng phương trình bậc 2 so với t.

* lưu ý: PT: asinx + bcosx = c, (a≠0,b≠0) tất cả nghiệm lúc c2 ≤ a2 + b2

• Dạng bao quát của PT là:asin + bcos = c, (a≠0,b≠0).

* Ví dụ: Giải những phương trình sau:

a) 

b)

° Lời giải:

a) 

+ Ta có: 

*
 khi đó:

  

*

+ Đặt 

*
 ta có: cosφ.sinx + sinφ.cosx = 1.

 

*
 
*
 
*

b) 

 

*
 
*

 

*

 

*
 hoặc 
*

 

*
 hoặc 
*

* lưu ý: bài xích toán vận dụng công thức:

 

*
 

 

*

° Dạng 6: Phương trình đối xứng cùng với sinx và cosx

 a(sinx + cosx) + bsinx.cosx + c = 0 (a,b≠0).

* Phương pháp

- Đặt t = sinx + cosx, lúc đó:  thay vào phương trình ta được:

 bt2 + 2at + 2c - b = 0 (*)

- lưu ý: 

*
 nên đk của t là: 

- do đó sau khi tìm được nghiệm của PT (*) buộc phải kiểm tra (đối chiếu) lại đk của t.

- Phương trình dạng: a(sinx - cosx) + bsinx.cosx + c = 0 chưa hẳn là PT dạng đối xứng nhưng lại cũng hoàn toàn có thể giải bằng phương pháp tương tự:

 Đặt t = sinx - cosx;  

*

* Ví dụ: Giải những phương trình sau:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

b) sin2x - 12(sinx + cosx) + 12 = 0

° Lời giải:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

+ Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 ⇔ 2t2 - 2t - 1 = 0

  hoặc 

+ Với  

*

 

*
 
*

 

*

+ Tương tự, với 

*

 b) sin2x - 12(sinx + cosx) + 12 = 0

 

*

 

*

Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 
*
 
*

+ với t=1 

*

 

*
*

 

*
 hoặc 
*

*
 hoặc 
*

+ Với 

*
: loại

III. Bài bác tập về những dạng toán Phương trình lượng giác

Bài 2 (trang 28 SGK Đại số với Giải tích 11): Với đầy đủ giá trị như thế nào của x thì giá chỉ trị của các hàm số y = sin 3x với y = sin x bởi nhau?

° lời giải bài 2 trang 28 SGK Đại số cùng Giải tích 11:

- Ta có: 

*

 

*
 
*

 

*

- Vậy với 

*
thì 
*

* bài xích 3 (trang 28 SGK Đại số 11): Giải các phương trình sau:

 a) 

 b) 

*

 c) 

 d) 

° giải mã bài 3 trang 28 SGK Đại số với Giải tích 11:

a) 

 

*
 
*

- Kết luận: PT có nghiệm

*

b) cos3x = cos12º

⇔ 3x = ±12º + k.360º , k ∈ Z

⇔ x = ±4º + k.120º , k ∈ Z

- Kết luận: PT gồm nghiệm x = ±4º + k.120º , k ∈ Z

c) 

 

*
 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

d) 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

Bài 4 (trang 29 SGK Đại số với Giải tích 11): Giải phương trình 

° giải mã bài 3 trang 28 SGK Đại số với Giải tích 11:

- Điều kiện: sin2x≠1

- Ta có:  

*

 

*
 
*

 

*

+ Đến phía trên ta cần đối chiếu với điều kiện:

- Xét k lẻ tức là: k = 2n + 1

 

*

*
(thỏa điều kiện)

- Xét k chẵn tức là: k = 2n

*

*
 (không thỏa ĐK)

- Kết luận: Vậy PT bao gồm họ nghiệm là 

*

Bài 1 (trang 36 SGK Đại số và Giải tích 11): Giải phương trình: sin2x – sinx = 0 

° giải mã bài 1 trang 36 SGK Đại số cùng Giải tích 11:

- Ta có: sin2x – sinx = 0

 

*

 

*
 
*

 

*
 hoặc 
*

- Kết luận: PT có tập nghiệm 

*

* bài bác 2 (trang 36 SGK Đại số với Giải tích 11): Giải các phương trình sau:

a) 2cos2x – 3cosx + 1 = 0

b) 2sin2x +

*
.sin4x = 0

° giải thuật bài 2 trang 36 SGK Đại số cùng Giải tích 11:

a) 2cos2x – 3cosx + 1 = 0 (1)

- Đặt t = cosx, điều kiện: –1 ≤ t ≤ 1, lúc đó PT (1) trở thành: 2t2 – 3t + 1 = 0